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Abstract. In this paper, we report the development of a simple and very efficient method for 
the determination of the Green function of an ideal semi-infinite crystal within the frame of 
the tight-binding linear muffin-tin orbital method. As a test of the method, we calculate the 
k,,-resolved layer densities of states for Cu(OO1) and Cu(ll1) surfaces. 

In the last few years a number of theoretical methods have been developed to study the 
electronic structure of solid surfaces. The methods can be divided into two groups: 

(i) an eigenvalue technique applied to a finite slab; 
(ii) a Green function (GF) formalism for a semi-infinite system. 

The powerful film linear augmented plane-wave method [l] is advantageous in film 
problems, and it even allows us to include effectsof non-muffin-tin potentials. The linear 
muffin-tin orbital (LMTO) method [2] has been applied to the finite film recently [3]. The 
GF methods are not limited to films or slabs, the minimal basis set is used, and the 
formalism can be developed either in real space using the layer Korringa-Kohn-Rosto- 
ker (KKR) method [4], or in the tight-binding (TB) representation [5 ] .  The advantage of 
the TB methods in comparison with the layer KKR method is their simplicity, but they are 
usually limited to semi-empirical treatments. This situation has been changed with the 
development of the first-principles TB approach based on the LMTO method. This TB 
LMTO method [6] retains the simplicity of the empirical schemes but combines it with an 
accuracy comparable with other first-principles methods. 

The presence of the surface is included in the TB formalism via the so-called natural 
boundary condition: no hopping is allowed out of the sample. To formulate this math- 
ematically, we introduce the notion of the principal layer [7]: any crystal with a surface 
can be described by a semi-infinite stack of principal layers with only nearest-neighbour 
interactions between them. The projection of the GF of the ideal semi-infinite crystal 
onto the top principal layer is the surface Green function (SGF), which is a central 
quantity for applications of the GF method to surfaces, overlayers and interfaces [ 7 ] .  
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One group of methods for the determination of the s ~ ~ s t a r t s  from the infinite crystal 
and introduces a surface-localised 'pseudopotential' which decouples the sample into 
two parts by compensating for the undesired hoppings [8,9] or by surrounding the 
fragment by an infinitely high barrier [ 5 ,  101. The latter approach is advantageous 
because the perturbation is explicitly symmetrical and extends only over one principal 
layer [lo] .  A common feature of these approaches is the determination of the SGF 
via integration of certain expressions containing the bulk GF over the surface-normal 
component k ,  of the k-vector in the Brillouin zone. The TB LMTO method has been 
applied to the evaluation of the SGF using both methods in recent papers [9 ,11] .  Here 
we present a new approach, which allows us to evaluate the SGF directly, avoiding k ,  
integration and bulk resolvent. The method has been proposed by us recently [12] ,  and 
here we implement it practically. 

The LMTO Hamiltonian in the orthogonal representation [6] is 

HRL,R'L, = C R L ~ R R ~ ~ L L ,  + A ~ ~ [ S o ( l  - y s o ) - l ] ~ ~ , ~ , ~ f A $ i ,  (1) 

where X = C, A, y are the potential parameter matrices, diagonal with respect to the 
site ( R )  and orbital ( L  = I, m) indices and describing the scattering properties of atoms. 
The lattice structure enters the problem via the structure constant matrix So. The 
Hamiltonian acts in the space spanned by the projector 

Here, I x R L )  is the muffin-tin orbital (MTO), R = (R,l, R,) and denote the group of 
atomic layers forming the ith principal layer. 

We wish to determine the quantity G o o ( z )  = I I o G ( z ) I I o ,  G ( z )  = ( z  - H)- ' .  To this 
end we change from the original MTO representation ( 1 )  to the most-localised rep- 
resentation [ll, 121. For G ( z )  we obtain 

G R L , R ' L '  (2) = A $ L ( Z ) d R R ' 8 L L '  -k ~ L L ( Z ) g P R L , R ' L ' ( Z ) P P R ' L ' ( Z )  

A g L ( z >  = A R ~ ' 2 ( Y R L  - PRL)PPRL(Z)  PPRL (2) = ( P L L  (z>)1'2 

P L L ( z )  = ( z  - C R L ) / [ A R L  + ( Y R L  - P R L ) ( Z  - c R L > l .  

The quantities /3 and Pp(z) ,  which are diagonal with respect to the indices R and L ,  
characterise the most-localised LMTO representation and the potential function; the 
quantity @ ( z )  denotes the energy derivative of Pp(z). The most-localised structure 
constant matrix SO has the shortest possible spatial extent [6] .  The problem is reduced 
to the evaluation of &(z) = ngp(z)IIo, for which we obtain the exact equation using a 
simple idea; we add a principal layer of bulk atoms to the semi-infinite crystal in such a 
way that we recover the same semi-infinite crystal. After the Bloch transformation for 
sites of the principal layers has been performed, the equation reads [12] 

g & ( z ,  kll) = [ ~ { ( z )  - Slo(kli) - s&(kll)g&(z, ~ I I ) ~ ~ o ( ~ I I ) I - ' .  (4) 

In this expression, P ( ( z )  = n o P P ( z ) I I o ,  S& = lToS@IIo, SEl = IloS@IIl and 
Sfo = (SEl)+. Note that, for a perfect crystal, P f ( z )  = P { ( z ) ,  Si,i+l = Sol, etc. The 
equation can be derived using the partitioning technique developed for surface-related 



Surface Green function calculation by LMTO 9895 

problems in [lo,  131. Equation (4) is exact, can be solved easily by iterations and 
conserves the Herglotz property of goo(z). We note that equation (4) is formally similar 
to the self-consistent equation for the transfer matrix appearing in the transfer matrix 
method of [ 141. For an s-cubium model, equation (4) is reduced to the quadratic equation 
whose solution, when substituted back into equation (3), gives the well known result 
obtained first in [8]. The equation similar to (4) could be derived also directly in the 
orthogonal LMTO representation in which the Hamiltonian (1) is written. The trans- 
formation (3) to the most-localised LMTO representation has, however, great practical 
importance in reducing the dimensionality of the problem owing to the above-mentioned 
shortest possible spatial extent of the structure constant Sp (e.g. only its first-nearest 
neighbours are sufficient for the FCC lattice [6]). 

We note that equation (4) can be obtained by letting the potential function Pp(z) go 
to infinity within the principal layer surrounding the sample. This is less restrictive than 
a hard-wall potential used in conventional TB approaches. As discussed in [ l l ] ,  it is 
simple to go beyond this approximation for a free surface by coupling to it a few 
layers or even the semi-infinite crystal with potential parameters corresponding to a flat 
potential [6]. This is equivalent to a certain surface barrier in the vacuum. Conveniently, 
added atoms can form a periodic continuation of the sample, so that we have got an ideal 
infinite crystal with the bulk structure constant matrix SB and an abrupt change in the 
potential functions @(z)  at the sample boundary. In practice, a single layer of added 
atoms has almost the same effect as a full added space. The corresponding expression 
for this new SGF, which we denote by g&(z, kil), is 

- sfo(kl()[Pt!(z) - ~ & ~ ~ l ~ ~ l - l ~ ~ l ~ ~ l l ~ ~ - ' ~  ( 5 )  

This equation can be again obtained by the partitioning technique of [13]; P!(z)  denotes 
the vacuum potential function, and g&(z ,  k ~ l )  is the SGF defined in equation (4). Note 
that g& is simply the subsurface GF for a system consisting of an overlayer of added 
atoms on the semi-infinite substrate. The other subsurface elements of gp(z), given by 
g$ ( z )  = n igp  (z)II,, can be found similarly [ 131. 

We apply our formalism to the evaluation of electronic structure of FCC Cu(OO1) 
and Cu(ll1) surfaces, using the sp3d5 basis set and the self-consistent bulk potential 
parameters, and taking into account nearest-neighbour interactions to determine the 
elements of Sfi(k1,) [6]. A principal layer consists of a single atomic layer in both cases. 
We solve equation (4) for (g&)-' rather than for g&, shift the energy into the complex 
plane and perform an analytical deconvolution back onto the real axis at the end of 
calculations. The use of [g&(z ,  kl1)]-' as an input value for [g&(z + &, kll)]-l speeds 
up the calculations appreciably. 

The layer- and kll-resolved densities of states, denoted by p(E, kll) CC ZcL @ ( E )  
Im[g&(E + io, k ~ l ) ] ~ , ~  are plotted in figures 1 and 2. We note the overall good agreement 
of our results with those obtained by the layer KKR method for the same systems [15]. 
The bulk-derived peaks coincide with corresponding bulk bands; the peaks damped into 
the bulk are surface states. The layer of added atoms representing a surface barrier, 
lying at O(111) = 5 eV (O(111) is the work function) above the bulk Fermi level, shifts 
the surface state on Cu(ll1) towards the Fermi level, leaving the bulk states essentially 
unchanged (figure 2). The lowering of the above surface barrier by 2.5 eV shifts the 
surface state onto the Fermi level in accordance with experiment [16]. 
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Figure 1. Layer- andk,l-resolved densities of states 
for the FCC Cu(OO1) surface (kll = (0,O)).  The 
Fermi level is the energy zero. The bottom row 
gives the corresponding bulk band structure along 
the surface normal, which is T-X. The inter-layer 
spacing is d .  
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Figure 2. Layer- and kl,-resolved densities of states 
for the FCC Cu(ll1) surface (kll = (0,O)).  The 
Fermi level is the energy zero. The bottom row 
gives the corresponding bulk band structure along 
the surface normal, which is T-L. The inter-layer 
spacing is d .  The changes after adding one layer 
of additional atoms are indicated by a broken line. 

We have presented a new method for determination of the SGF, which is physically 
transparent, reliable and inexpensive concerning computer time, memory and pro- 
gramming requirements. It yields a solution for an ideal semi-infinite solid to which non- 
ideal layers can be added in order to determine the electronic structure of more complex 
systems, such as disordered or partially covering overlayers on the perfect substrate, 
with possible changes in inter-layer spacings. 
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